Difference between revisions of "Jiake Ge zh"

From dbgroup
Jump to: navigation, search
Line 12: Line 12:
 
'''邮政编码''':300354</br>
 
'''邮政编码''':300354</br>
 
'''办公地址''':55楼A417</br>
 
'''办公地址''':55楼A417</br>
 +
'''电子邮箱''':gejiake@tju.edu.cn
  
电子邮箱:gejiake@tju.edu.cn
+
 
 +
== 学术论文 ==
 +
 
 +
 
 +
#<span style="color: red;">[WWW'25]</span> Hui Wang, Xin Wang, '''Jiake Ge*''', et al. '''ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models.'''[C]//The 2025 ACM Web Conference. '''(Corresponding author)''' (CCF A)
 +
#[WWW'25] Yiheng You, Xin Wang, Jiake Ge*, et al. KOE: A Key Distribution-Oriented Performance Estimation Framework for Diverse Index Structures.[C]//The 2025 ACM Web Conference, short paper. (Corresponding author) (CCF A)
 +
#[SIGMOD'24] Jiake Ge, Huanchen Zhang, et al. SALI: A Scalable Adaptive Learned Index Framework based on Probability Models[C]//Proceedings of the 2024 ACM international conference on management of data. (CCF A)
 +
#[ICDE'23] Jiake Ge, Boyu Shi, et al. Cutting Learned Index into Pieces: An In-depth Inquiry into Updatable Learned Indexes[C]//2023 IEEE 39th International Conference on Data Engineering. (CCF A)
 +
#[JCST'21] Jiake Ge, Yanfeng Chai, Yunpeng Chai. WATuning: a workload-aware tuning system with attention-based deep reinforcement learning[J]. Journal of Computer Science and Technology, 2021. (SCI,CCF B)
 +
#[WWW'24] Yunda Guo, Jiake Ge, et al. PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications[C]// 2024 Proceedings of the ACM on Web Conference. (CCF A)
 +
#[LSGDA'24] Yang Liu, Xin Wang, Jiake Ge, et al. Text to Graph Query Using Filter Condition Attributes[C]// VLDB 2024 Workshop: 3rd International Workshop on Large-Scale Graph Data Analytics. Best Paper.
 +
#[BDR'22] Yanfeng Chai, Jiake Ge, et al. Correlation Expert Tuning System for Performance Acceleration[J]. Big Data Research, 2022, 30: 100345. (SCI)
 +
#[WISE'21] Yanfeng Chai, Jiake Ge, et al. Xtuning: Expert database tuning system based on reinforcement learning[C]// International Conference on Web Information Systems Engineering, 2021: 101-110. (CCF C)

Revision as of 02:14, 19 February 2025

Gejiake.jpg

English

天津大学 智能与计算学部 助理研究员


研究领域:智能数据库技术(AI4DB)、知识图谱、云资源管理技术
研究方向:学习索引、数据库自动调优、知识图谱数据管理、云资源弹性伸缩
通讯地址:天津市海河教育园区天津大学北洋园校区智能与计算学部
邮政编码:300354
办公地址:55楼A417
电子邮箱:gejiake@tju.edu.cn


学术论文

  1. [WWW'25] Hui Wang, Xin Wang, Jiake Ge*, et al. ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models.[C]//The 2025 ACM Web Conference. (Corresponding author) (CCF A)
  2. [WWW'25] Yiheng You, Xin Wang, Jiake Ge*, et al. KOE: A Key Distribution-Oriented Performance Estimation Framework for Diverse Index Structures.[C]//The 2025 ACM Web Conference, short paper. (Corresponding author) (CCF A)
  3. [SIGMOD'24] Jiake Ge, Huanchen Zhang, et al. SALI: A Scalable Adaptive Learned Index Framework based on Probability Models[C]//Proceedings of the 2024 ACM international conference on management of data. (CCF A)
  4. [ICDE'23] Jiake Ge, Boyu Shi, et al. Cutting Learned Index into Pieces: An In-depth Inquiry into Updatable Learned Indexes[C]//2023 IEEE 39th International Conference on Data Engineering. (CCF A)
  5. [JCST'21] Jiake Ge, Yanfeng Chai, Yunpeng Chai. WATuning: a workload-aware tuning system with attention-based deep reinforcement learning[J]. Journal of Computer Science and Technology, 2021. (SCI,CCF B)
  6. [WWW'24] Yunda Guo, Jiake Ge, et al. PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications[C]// 2024 Proceedings of the ACM on Web Conference. (CCF A)
  7. [LSGDA'24] Yang Liu, Xin Wang, Jiake Ge, et al. Text to Graph Query Using Filter Condition Attributes[C]// VLDB 2024 Workshop: 3rd International Workshop on Large-Scale Graph Data Analytics. Best Paper.
  8. [BDR'22] Yanfeng Chai, Jiake Ge, et al. Correlation Expert Tuning System for Performance Acceleration[J]. Big Data Research, 2022, 30: 100345. (SCI)
  9. [WISE'21] Yanfeng Chai, Jiake Ge, et al. Xtuning: Expert database tuning system based on reinforcement learning[C]// International Conference on Web Information Systems Engineering, 2021: 101-110. (CCF C)