Difference between revisions of "Jiake Ge zh"
(→学术论文) |
|||
Line 18: | Line 18: | ||
− | #<span style="color: red;">[WWW'25]</span> Hui Wang, Xin Wang, '''Jiake Ge*''', et al. '''ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models.'''[C]//The 2025 ACM Web Conference. '''(Corresponding author)''' (CCF A) | + | #<span style="color: red;">[WWW'25]</span> Hui Wang, Xin Wang, '''Jiake Ge*''', et al. '''ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models.'''[C]//The 2025 ACM Web Conference. '''(Corresponding author)''' <span style="color: red;">(CCF A)</span> |
− | #[WWW'25] Yiheng You, Xin Wang, Jiake Ge*, et al. KOE: A Key Distribution-Oriented Performance Estimation Framework for Diverse Index Structures.[C]//The 2025 ACM Web Conference, short paper. (Corresponding author) (CCF A) | + | #<span style="color: red;">[WWW'25]</span> Yiheng You, Xin Wang, '''Jiake Ge*''', et al. '''KOE: A Key Distribution-Oriented Performance Estimation Framework for Diverse Index Structures.'''[C]//The 2025 ACM Web Conference, short paper. (Corresponding author) <span style="color: red;">(CCF A)</span> |
− | #[SIGMOD'24] Jiake Ge, Huanchen Zhang, et al. SALI: A Scalable Adaptive Learned Index Framework based on Probability Models[C]//Proceedings of the 2024 ACM international conference on management of data. (CCF A) | + | #<span style="color: red;">[SIGMOD'24]</span> '''Jiake Ge''', Huanchen Zhang, et al. '''SALI: A Scalable Adaptive Learned Index Framework based on Probability Models'''[C]//Proceedings of the 2024 ACM international conference on management of data. <span style="color: red;">(CCF A)</span> |
− | #[ICDE'23] Jiake Ge, Boyu Shi, et al. Cutting Learned Index into Pieces: An In-depth Inquiry into Updatable Learned Indexes[C]//2023 IEEE 39th International Conference on Data Engineering. (CCF A) | + | #<span style="color: red;">[ICDE'23]</span> '''Jiake Ge''', Boyu Shi, et al. '''Cutting Learned Index into Pieces: An In-depth Inquiry into Updatable Learned Indexes'''[C]//2023 IEEE 39th International Conference on Data Engineering. <span style="color: red;">(CCF A)</span> |
− | #[JCST'21] Jiake Ge, Yanfeng Chai, Yunpeng Chai. WATuning: a workload-aware tuning system with attention-based deep reinforcement learning[J]. Journal of Computer Science and Technology, 2021. (SCI,CCF B) | + | #<span style="color: red;">[JCST'21]</span> '''Jiake Ge''', Yanfeng Chai, Yunpeng Chai. '''WATuning: a workload-aware tuning system with attention-based deep reinforcement learning'''[J]. Journal of Computer Science and Technology, 2021. <span style="color: red;">(SCI,CCF B)</span> |
− | #[WWW'24] Yunda Guo, Jiake Ge, et al. PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications[C]// 2024 Proceedings of the ACM on Web Conference. (CCF A) | + | #<span style="color: red;">[WWW'24]</span> Yunda Guo, '''Jiake Ge''', et al. '''PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications'''[C]// 2024 Proceedings of the ACM on Web Conference. <span style="color: red;">(CCF A)</span> |
− | #[LSGDA'24] Yang Liu, Xin Wang, Jiake Ge, et al. Text to Graph Query Using Filter Condition Attributes[C]// VLDB 2024 Workshop: 3rd International Workshop on Large-Scale Graph Data Analytics. Best Paper. | + | #<span style="color: red;">[LSGDA'24]</span> Yang Liu, Xin Wang, '''Jiake Ge''', et al. '''Text to Graph Query Using Filter Condition Attributes'''[C]// VLDB 2024 Workshop: 3rd International Workshop on Large-Scale Graph Data Analytics. Best Paper. |
− | #[BDR'22] Yanfeng Chai, Jiake Ge, et al. Correlation Expert Tuning System for Performance Acceleration[J]. Big Data Research, 2022, 30: 100345. (SCI) | + | #<span style="color: red;">[BDR'22]</span> Yanfeng Chai, '''Jiake Ge''', et al. '''Correlation Expert Tuning System for Performance Acceleration'''[J]. Big Data Research, 2022, 30: 100345. <span style="color: red;">(SCI)</span> |
− | #[WISE'21] Yanfeng Chai, Jiake Ge, et al. Xtuning: Expert database tuning system based on reinforcement learning[C]// International Conference on Web Information Systems Engineering, 2021: 101-110. (CCF C) | + | #<span style="color: red;">[WISE'21]</span> Yanfeng Chai, '''Jiake Ge''', et al. '''Xtuning: Expert database tuning system based on reinforcement learning'''[C]// International Conference on Web Information Systems Engineering, 2021: 101-110. <span style="color: red;">(CCF C)</span> |
Revision as of 02:25, 19 February 2025
天津大学 智能与计算学部 助理研究员
研究领域:智能数据库技术(AI4DB)、知识图谱、云资源管理技术
研究方向:学习索引、数据库自动调优、知识图谱数据管理、云资源弹性伸缩
通讯地址:天津市海河教育园区天津大学北洋园校区智能与计算学部
邮政编码:300354
办公地址:55楼A417
电子邮箱:gejiake@tju.edu.cn
学术论文
- [WWW'25] Hui Wang, Xin Wang, Jiake Ge*, et al. ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models.[C]//The 2025 ACM Web Conference. (Corresponding author) (CCF A)
- [WWW'25] Yiheng You, Xin Wang, Jiake Ge*, et al. KOE: A Key Distribution-Oriented Performance Estimation Framework for Diverse Index Structures.[C]//The 2025 ACM Web Conference, short paper. (Corresponding author) (CCF A)
- [SIGMOD'24] Jiake Ge, Huanchen Zhang, et al. SALI: A Scalable Adaptive Learned Index Framework based on Probability Models[C]//Proceedings of the 2024 ACM international conference on management of data. (CCF A)
- [ICDE'23] Jiake Ge, Boyu Shi, et al. Cutting Learned Index into Pieces: An In-depth Inquiry into Updatable Learned Indexes[C]//2023 IEEE 39th International Conference on Data Engineering. (CCF A)
- [JCST'21] Jiake Ge, Yanfeng Chai, Yunpeng Chai. WATuning: a workload-aware tuning system with attention-based deep reinforcement learning[J]. Journal of Computer Science and Technology, 2021. (SCI,CCF B)
- [WWW'24] Yunda Guo, Jiake Ge, et al. PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications[C]// 2024 Proceedings of the ACM on Web Conference. (CCF A)
- [LSGDA'24] Yang Liu, Xin Wang, Jiake Ge, et al. Text to Graph Query Using Filter Condition Attributes[C]// VLDB 2024 Workshop: 3rd International Workshop on Large-Scale Graph Data Analytics. Best Paper.
- [BDR'22] Yanfeng Chai, Jiake Ge, et al. Correlation Expert Tuning System for Performance Acceleration[J]. Big Data Research, 2022, 30: 100345. (SCI)
- [WISE'21] Yanfeng Chai, Jiake Ge, et al. Xtuning: Expert database tuning system based on reinforcement learning[C]// International Conference on Web Information Systems Engineering, 2021: 101-110. (CCF C)